NASA’s Parker Solar Probe Is Named for Him. 60 Years Ago, No One Believed His Ideas About the Sun.

NASA’s Parker Solar Probe Is Named for Him. 60 Years Ago, No One Believed His Ideas About the Sun.


Eugene N. Parker predicted the existence of solar wind in 1958. The NASA spacecraft is the first named for a living person.

Eugene N. Parker, second right, visiting the Johns Hopkins Applied Physics Laboratory in October in Laurel, Md., where NASA’s Parker Solar Probe was being assembled.CreditEd Whitman/NASA/Johns Hopkins APL

CHICAGO — It was 1958. Sputnik had launched only a year earlier, the first human-made object to circle the planet. But the beach ball-size spacecraft had no instruments to measure anything in space.

The study of what was up there was largely limited to what scientists could observe from the ground. It certainly looked like the vast expanses between planets were empty. And that is what most scientists believed.

But not Eugene N. Parker, then a 31-year-old, no-name professor at the University of Chicago. In a foundational paper published in The Astrophysical Journal, Dr. Parker described how charged particles streamed continuously from the sun, like the flow of water spreading outward from a circular fountain.

Almost no one believed him.

“The prevailing view among some people was that space was absolutely clean, nothing in it, total vacuum,” Dr. Parker recalled during an interview at his home.

The scientists who had reviewed the paper rejected his idea as ludicrous. Dr. Parker appealed to the journal’s editor, Subrahmanyan Chandrasekhar, a prominent astrophysicist also at Chicago, arguing that the reviewers had not pointed out any errors, just that they did not like the premise.

Dr. Chandrasekhar overruled the reviewers.

[Sign up to get reminders for space and astronomy events on your calendar.]

Four years later, Dr. Parker was vindicated when Mariner 2, a NASA spacecraft en route to Venus, measured energetic particles streaming through interplanetary space — exactly what Dr. Parker had predicted.

Scientists now call that stream of particles the solar wind.

NASA’s Parker Solar Probe will fly through the punishing heat of the sun’s outer atmosphere.Published On

Sixty years after Dr. Parker’s paper, NASA is about to launch a spacecraft that is to dive into outer wisps of the sun’s atmosphere and gather information about how our star generates the solar wind.

It is the Parker Solar Probe, named after Dr. Parker, now 91 years old. It is the first time that NASA has named a mission for a living person.

Dr. Parker, two decades into his retirement from the University of Chicago, is frailer now than when he made a trip to the North Pole with his son Eric in 2004. His apartment here, overlooking the Museum of Science and Industry, is decorated with some of his intricate wood carvings.

He still gets around. Last October, he traveled to the Johns Hopkins Applied Physics Laboratory, where the spacecraft was built, for a “Parker, meet Parker!” encounter.

Image
Dr. Parker rejected the notion that space was a clean, empty vacuum, positing that charged particles were constantly emanating from the sun.CreditJoshua Lott for The New York Times

***

Dr. Parker did not set out to revolutionize the science of the sun. He did not even have much interest in interplanetary science although he was seeking a research career. But academic jobs were scarce.

Dr. Chandrasekhar put in a good word for him when a Chicago physics colleague, John A. Simpson, was looking to hire someone to help study the mysterious particles known as cosmic rays. The thinking was that even though cosmic rays originate far away in other galaxies, the cascades of collisions they cause close to Earth might reveal something about the contents of the interplanetary neighborhood.

That led to solar physics. “I discovered it was a fascinating subject,” Dr. Parker said.

Since the 1800s, scientists did know that at least sometimes explosions from the surface of the sun affected Earth. That included one on Aug. 29, 1859. That day, two English amateur astronomers, Richard Carrington and Richard Hodgson, independently observed a “white light flare” emanating from the surface of the sun. Less than a day later, Earth’s magnetic field was knocked awry. Across America and Europe, telegraph wires sparked and failed.

Fewer than 18 hours elapsed between the flare and the geomagnetic storm on Earth. That meant whatever had exploded off the sun must have traveled at more than 5 million miles per hour.

An image made by NASA’s STEREO mission in 2016 showing solar wind. The image was processed to remove some background noise.CreditCraig DeForest, SwRI

Scientists had no idea what that might be.

Comets provided another clue. The tail of gas and dust coming from a comet does not flow behind the comet as one might expect, but instead its direction always points away from the sun.

A German astronomer, Ludwig Biermann, suggested that particles emitted from the sun — what he called solar corpuscular radiation — were shaping the comet tails. (“Corpuscular” is a fancy word that means “consisting of tiny bits of something.”)

“That is an important piece of information,” Dr. Parker said. “All comet tails have this property so in all directions at all times, the sun is emitting something or other.”

Dr. Parker’s crucial insight was that this flow of particles would follow the same dynamics as wind and water.

The calculations showed that the flow started slow near the sun and accelerated as it moved farther away, passing Earth at supersonic speeds. “That really stuck in people’s craw,” he said.

That is what he wrote down in his 1958 paper. “It was widely disbelieved,” Dr. Parker said. “I even had people say, ‘Well, you know, it was a great idea, too bad it was wrong.’ I said, ‘I don’t see why it’s wrong.’”

The skepticism did not worry him. Fluid dynamics is a direct derivation from Newton’s laws of motion.

After Mariner 2, “everyone agreed the solar wind existed,” Dr. Parker said.

Light bar testing of the Parker Solar Probe at the Astrotech processing facility in Titusville, Fla., in June.CreditGlenn Benson/NASA
Left, the probe being encapsulated for delivery to the Delta IV Heavy rocket, right, at Cape Canaveral, which will take it into space.CreditLeft, Leif Heimbold/NASA; Right, Ben Smegelsky/NASA

***

While Dr. Parker moved on to other problems in astrophysics, a close-up visit to the sun has been on NASA’s to-do list since the 1950s. Over the decades, various sun-watching spacecraft have observed the sun, but always from a distance.

In 2005, at NASA’s request, engineers at Johns Hopkins Applied Physics Laboratory in Laurel, Md. proposed the Solar Probe, a mission that would swoop within 1.8 million miles of the sun. But it would have cost more than $1 billion at the time and it required a plutonium power source that NASA didn’t want to use. Because of the intense heat, the mission would have been over after two flybys.

NASA sent the engineers back to see if they could trim the price tag to under $750 million and eliminate the plutonium. To do that, the spacecraft would not fly as close. But that had a major benefit; the spacecraft would make 24 orbits instead of two, gradually moving inward, and gather much more data.

NASA gave the go-ahead and renamed the revised concept Solar Probe Plus.

Earlier NASA missions have been given new names shortly before or after launching to honor scientists or noteworthy people in NASA’s history. Last year, Dr. Parker got a phone call from Thomas Zurbuchen, NASA’s associate administrator for the science directorate, saying that NASA wanted change the name to Parker Solar Probe.

Dr. Parker said he was surprised and seemed bemused that NASA was asking for his permission.

“I said, ‘Of course, I don’t mind,’” Dr. Parker said.

The data from the Parker Solar Probe could help explain the remaining mysteries of how the sun works, in particular how the sun’s atmosphere — the corona — reaches millions of degrees Fahrenheit while the surface of the sun is a relatively cool 10,000 degrees.

Dr. Parker is curious about the data but does not expect to come up with the answers. “I’ve retired,” he said, “so someone else can swipe that one.”

Dr. Parker with an image of solar wind, circa 1977.CreditUniversity of Chicago

Kenneth Chang has been at The Times since 2000 writing about physics, geology, chemistry, and the planets. Before becoming a science writer, he was a graduate student whose research involved the control of chaos. @kchangnyt

A version of this article appears in print on , on Page A14 of the New York edition with the headline: He Predicted Solar Wind; Now, Namesake Probe Aims for a Close-Up. Order Reprints | Today’s Paper | Subscribe

http://platform.twitter.com/widgets.js



Source link

About The Author

Related posts

Leave a Reply